If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+9n-40=0
a = 1; b = 9; c = -40;
Δ = b2-4ac
Δ = 92-4·1·(-40)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{241}}{2*1}=\frac{-9-\sqrt{241}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{241}}{2*1}=\frac{-9+\sqrt{241}}{2} $
| -8/9+1/7x-3/7x=-298/315 | | D(t)=0.33t^2 | | -68/11=-4x-4x-4 | | 3x-(5x+8)=8x-18 | | 3x/2-2=4/3 | | 4x+2x=3+9 | | -15x=15x | | 15x+3=18x-5 | | J=-19x-2 | | 7(2y+1)+3=80 | | 7x–2x+3=4x+3+x | | 16+3x-3=31-3x | | 2x+3-(x-2)+4x=3x+2(x-5) | | 4x+8+5=x-5 | | 6.5+x=34 | | 3(3x-1=15+6x-2x-3 | | 19+12x=22+11x | | 34+x=6.5 | | 22+16x=14+18x | | -x+28=2x+4 | | 4^3x=8^−2x−4 | | 5x+2=x-30 | | 29+22x=13+24x | | X+11=4x+29 | | H5x+1=2x+4 | | p+23/5=91/8 | | -2x+1=2x+17 | | 91/8=23/5+p | | 0.3=0.9^x | | 0.9^x=0.3 | | 7x+11=180 | | 4(t+25)=4(t+50)-4(0.15t)= |